core_pb/driving/
network.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
use crate::constants::DEFAULT_NETWORK;
use crate::driving::data::SharedRobotData;
use crate::driving::RobotBehavior;
use crate::messages::robot_tcp::{write_tcp, BytesOrT, StatefulTcpReader, TcpError, TcpMessage};
use crate::messages::{
    ExtraImuData, ExtraOptsTypes, FrequentServerToRobot, MotorControlStatus, NetworkStatus,
    RobotToServerMessage, SensorData, ServerToRobotMessage, Task,
};
use crate::names::RobotName;
use crate::util::utilization::UtilizationMonitor;
use crate::util::CrossPlatformInstant;
use core::fmt::Debug;
use core::pin::pin;
use core::sync::atomic::Ordering;
use core::time::Duration;
use defmt_or_log::{error, info};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::signal::Signal;
use embassy_sync::watch::{Receiver, Sender};
use embedded_io_async::{Read, Write};
use futures::{select_biased, FutureExt};
use heapless::Vec;

#[derive(Copy, Clone)]
pub struct NetworkScanInfo {
    pub ssid: [u8; 32],
    pub is_5g: bool,
}

/// Functionality that robots with networking must support
pub trait RobotNetworkBehavior {
    type Error: Debug;
    type Socket<'a>: Read + Write
    where
        Self: 'a;

    /// Get the device's mac address
    async fn mac_address(&mut self) -> [u8; 6];

    /// If the device is currently connected to a wifi network, its IP, else None
    async fn wifi_is_connected(&self) -> Option<[u8; 4]>;

    /// List information for up to `C` networks
    async fn list_networks<const C: usize>(&mut self) -> Vec<NetworkScanInfo, C>;

    /// Connect to a network with the given username/password. This method shouldn't return until
    /// the connection either completes or fails, but it shouldn't do any retries.
    ///
    /// This will only be called if [`RobotNetworkBehavior::wifi_is_connected`] is `false`
    async fn connect_wifi(
        &mut self,
        network: &str,
        password: Option<&str>,
    ) -> Result<(), Self::Error>;

    /// Disconnect from any active wifi network
    async fn disconnect_wifi(&mut self);

    /// Accept a socket that meets the requirements. Close the previous one if one exists
    async fn tcp_accept<'a>(
        &mut self,
        port: u16,
        tx_buffer: &'a mut [u8; 5192],
        rx_buffer: &'a mut [u8; 5192],
    ) -> Result<Self::Socket<'a>, Self::Error>
    where
        Self: 'a;

    /// Dispose of the current socket
    async fn tcp_close<'a>(&mut self, socket: &mut Self::Socket<'a>);

    async fn prepare_firmware_update(&mut self);

    /// See https://docs.embassy.dev/embassy-boot/git/default/struct.FirmwareUpdater.html#method.write_firmware
    async fn write_firmware(&mut self, offset: usize, data: &[u8]) -> Result<(), Self::Error>;

    /// See https://docs.embassy.dev/embassy-boot/git/default/struct.FirmwareUpdater.html#method.hash
    async fn hash_firmware(&mut self, update_len: u32, output: &mut [u8; 32]);

    /// See https://docs.embassy.dev/embassy-boot/git/default/struct.FirmwareUpdater.html#method.mark_updated
    async fn mark_firmware_updated(&mut self);

    /// See https://docs.embassy.dev/embassy-boot/git/default/struct.FirmwareUpdater.html#method.get_state
    async fn firmware_swapped(&mut self) -> bool;

    /// Reboot the microcontroller, as fully as possible
    async fn reboot(&mut self);

    /// See https://docs.embassy.dev/embassy-boot/git/default/struct.FirmwareUpdater.html#method.mark_booted
    async fn mark_firmware_booted(&mut self);
}

struct ExpectedFirmwarePart {
    offset: usize,
    len: usize,
}

struct NetworkData<'a, R: RobotBehavior + 'a> {
    name: RobotName,
    network: R::Network,
    seq: u32,

    data: &'a SharedRobotData<R>,
    config: FrequentServerToRobot,
    config_sender: Sender<'a, CriticalSectionRawMutex, FrequentServerToRobot, 2>,
    network_status_sender: Sender<'a, CriticalSectionRawMutex, (NetworkStatus, Option<[u8; 4]>), 2>,
    sensors_receiver: Receiver<'a, CriticalSectionRawMutex, SensorData, 2>,
    motors_receiver: Receiver<'a, CriticalSectionRawMutex, MotorControlStatus, 2>,

    expected_firmware_part: Option<ExpectedFirmwarePart>,

    utilization_monitor: UtilizationMonitor<50, R::Instant>,

    socket_failed: bool,
    serialization_buf: [u8; 1024],
}

impl<R: RobotBehavior> NetworkData<'_, R> {
    async fn connect_wifi(&mut self) {
        while self.network.wifi_is_connected().await.is_none() {
            self.network_status_sender
                .send((NetworkStatus::Connecting, None));
            loop {
                if let Ok(()) = self.network.connect_wifi(DEFAULT_NETWORK, None).await {
                    let ip = self.network.wifi_is_connected().await.unwrap_or([0; 4]);
                    self.network_status_sender
                        .send((NetworkStatus::Connected, Some(ip)));
                    break;
                }
                self.network_status_sender
                    .send((NetworkStatus::ConnectionFailed, None));
            }
            info!("{} network connected", self.name);
        }
    }

    async fn send(
        &mut self,
        socket: &mut <R::Network as RobotNetworkBehavior>::Socket<'_>,
        message: RobotToServerMessage,
    ) {
        self.write_tcp(socket, BytesOrT::T(message)).await;
    }

    async fn send_bytes(
        &mut self,
        socket: &mut <R::Network as RobotNetworkBehavior>::Socket<'_>,
        bytes: &[u8],
    ) {
        self.write_tcp(socket, BytesOrT::Bytes(bytes)).await;
    }

    async fn write_tcp(
        &mut self,
        socket: &mut <R::Network as RobotNetworkBehavior>::Socket<'_>,
        msg: BytesOrT<'_, RobotToServerMessage>,
    ) {
        match write_tcp::<RobotToServerMessage>(&mut self.seq, msg, &mut self.serialization_buf) {
            Ok(len) => {
                if socket
                    .write_all(&self.serialization_buf[..len])
                    .await
                    .is_err()
                {
                    error!("{} failed to send message", self.name);
                    self.socket_failed = true;
                }
            }
            Err(_) => {
                error!("{} failed to send message", self.name);
                self.socket_failed = true;
            }
        }
    }

    async fn handle_server_message(
        &mut self,
        s: &mut <R::Network as RobotNetworkBehavior>::Socket<'_>,
        msg: &TcpMessage<'_, ServerToRobotMessage>,
    ) {
        let msg = match &msg.msg {
            BytesOrT::T(t) => t.clone(),
            BytesOrT::Bytes(b) => {
                if let Some(ExpectedFirmwarePart { offset, len }) = self.expected_firmware_part {
                    if b.len() == len && self.network.write_firmware(offset, b).await.is_ok() {
                        self.send(s, RobotToServerMessage::ConfirmFirmwarePart { offset, len })
                            .await;
                        self.expected_firmware_part = None;
                    }
                }
                return;
            }
        };
        match msg {
            ServerToRobotMessage::Ping => {
                self.send(s, RobotToServerMessage::Pong).await;
                self.data.utilization[Task::Wifi as usize]
                    .store(self.utilization_monitor.utilization(), Ordering::Relaxed);
                let util = [
                    self.data.utilization[0].load(Ordering::Relaxed),
                    self.data.utilization[1].load(Ordering::Relaxed),
                    self.data.utilization[2].load(Ordering::Relaxed),
                ];
                self.send(s, RobotToServerMessage::Utilization(util)).await;
            }
            ServerToRobotMessage::FrequentRobotItems(msg) => {
                self.data
                    .enable_imu
                    .store(msg.enable_imu, Ordering::Relaxed);
                self.data
                    .enable_extra_imu_data
                    .store(msg.enable_extra_imu_data, Ordering::Relaxed);
                self.data
                    .enable_dists
                    .store(msg.enable_dists, Ordering::Relaxed);
                self.data
                    .enable_battery_monitor
                    .store(msg.enable_battery_monitor, Ordering::Relaxed);
                self.data
                    .enable_display
                    .store(msg.enable_display, Ordering::Relaxed);
                self.data
                    .enable_gamepad
                    .store(msg.enable_gamepad, Ordering::Relaxed);
                self.data
                    .display_loop_interval
                    .store(msg.display_loop_interval, Ordering::Relaxed);
                self.config = msg.clone();
                self.config_sender.send(msg);
            }
            ServerToRobotMessage::FirmwareWritePart { offset, len } => {
                self.expected_firmware_part = Some(ExpectedFirmwarePart { offset, len });
            }
            ServerToRobotMessage::CalculateFirmwareHash(len) => {
                let mut buf = Default::default();
                self.network.hash_firmware(len, &mut buf).await;
                self.send(s, RobotToServerMessage::FirmwareHash(buf)).await;
            }
            ServerToRobotMessage::MarkFirmwareUpdated => {
                self.network.mark_firmware_updated().await;
                self.send(s, RobotToServerMessage::MarkedFirmwareUpdated)
                    .await;
            }
            ServerToRobotMessage::IsFirmwareSwapped => {
                let swapped = self.network.firmware_swapped().await;
                self.send(s, RobotToServerMessage::FirmwareIsSwapped(swapped))
                    .await;
            }
            ServerToRobotMessage::MarkFirmwareBooted => {
                self.network.mark_firmware_booted().await;
                self.send(s, RobotToServerMessage::MarkedFirmwareBooted)
                    .await;
            }
            ServerToRobotMessage::ReadyToStartUpdate => {
                self.network.prepare_firmware_update().await;
                info!("{} is ready for an update", self.name);
                self.send(s, RobotToServerMessage::ReadyToStartUpdate).await;
            }
            ServerToRobotMessage::Reboot => {
                self.send(s, RobotToServerMessage::Rebooting).await;
                self.network.tcp_close(s).await;
                self.network.reboot().await;
                unreachable!("o7")
            }
            ServerToRobotMessage::CancelFirmwareUpdate => {}
            #[allow(deprecated)]
            ServerToRobotMessage::ExtraOpts(opts) => {
                opts.store_into(&self.data.extra_opts);
                let indicators = ExtraOptsTypes::load_from(&self.data.extra_indicators);
                self.send(s, RobotToServerMessage::ReceivedExtraOpts(opts))
                    .await;
                self.send(s, RobotToServerMessage::ExtraIndicators(indicators))
                    .await;
            }
        }
    }

    async fn handle_until_broken(
        &mut self,
        s: &mut <R::Network as RobotNetworkBehavior>::Socket<'_>,
    ) {
        let mut logs_buffer = [0; 512];
        let mut stateful_tcp_reader = StatefulTcpReader::new();
        let mut socket_ok_time = R::Instant::default();

        info!("{} client connected", self.name);

        self.send(s, RobotToServerMessage::Name(self.name)).await;
        if self.socket_failed {
            error!("{} failed to send name", self.name);
            return;
        }

        info!("{} sent name", self.name);

        loop {
            if self.socket_failed && socket_ok_time.elapsed().as_millis() >= 1_000 {
                error!("{} dropping socket due to extended downtime", self.name);
                return;
            }
            if !self.socket_failed {
                socket_ok_time = R::Instant::default();
            }

            // emit logs if we can find any
            while let Ok(count) = self.data.defmt_logs.try_read(&mut logs_buffer) {
                if count == 0 {
                    break;
                }
                self.send_bytes(s, &logs_buffer[..count]).await;
            }

            self.utilization_monitor.stop();
            let event = next_event::<R::Network, R::Instant>(
                &mut self.sensors_receiver,
                &mut self.motors_receiver,
                &self.data.sig_extra_imu_data,
                s,
                &mut stateful_tcp_reader,
            )
            .await;
            self.utilization_monitor.start();

            match event {
                NetworkEvent::TimedOut => {}
                NetworkEvent::ServerToRobot(Ok(msg)) => self.handle_server_message(s, &msg).await,
                NetworkEvent::ServerToRobot(Err(_e)) => {
                    // error!("Socket failed with error: {:?}", e);
                    break;
                }
                NetworkEvent::SensorData(data) => {
                    self.send(s, RobotToServerMessage::Sensors(data)).await
                }
                NetworkEvent::MotorData(data) => {
                    self.send(
                        s,
                        RobotToServerMessage::MotorControlStatus((
                            self.data.created_at.elapsed(),
                            data,
                        )),
                    )
                    .await
                }
                NetworkEvent::ExtraImuData(data) => {
                    self.send(s, RobotToServerMessage::ExtraImuData(data)).await
                }
            }
        }
    }
}

/// The "main" method for the network task
pub async fn network_task<R: RobotBehavior>(data: &SharedRobotData<R>, mut network: R::Network) {
    info!("mac address: {:?}", network.mac_address().await);
    let name = RobotName::from_mac_address(&network.mac_address().await)
        .expect("Unrecognized mac address");
    info!("{} initialized", name);

    let mut net = NetworkData {
        name,
        network,
        data,
        config: FrequentServerToRobot::new(name),
        seq: 0,

        config_sender: data.config.sender(),
        network_status_sender: data.network_status.sender(),

        sensors_receiver: data.sensors.receiver().unwrap(),
        motors_receiver: data.motor_control.receiver().unwrap(),
        expected_firmware_part: None,

        utilization_monitor: UtilizationMonitor::new(0.0, 0.0),

        socket_failed: false,
        serialization_buf: [0; 1024],
    };

    net.utilization_monitor.start();

    let mut tx_buffer = [0; 5192];
    let mut rx_buffer = [0; 5192];

    loop {
        net.connect_wifi().await;

        match net
            .network
            .tcp_accept(name.port(), &mut rx_buffer, &mut tx_buffer)
            .await
        {
            Ok(mut socket) => net.handle_until_broken(&mut socket).await,
            Err(_) => {
                info!("{} failed to accept socket", name);
            }
        }
    }
}

enum NetworkEvent<'reader> {
    TimedOut,
    ServerToRobot(Result<TcpMessage<'reader, ServerToRobotMessage>, TcpError>),
    SensorData(SensorData),
    MotorData(MotorControlStatus),
    ExtraImuData(ExtraImuData),
}

async fn next_event<'reader, R: RobotNetworkBehavior, I: CrossPlatformInstant>(
    sensors: &mut Receiver<'_, CriticalSectionRawMutex, SensorData, 2>,
    motors: &mut Receiver<'_, CriticalSectionRawMutex, MotorControlStatus, 2>,
    imu: &Signal<CriticalSectionRawMutex, ExtraImuData>,
    socket: &mut R::Socket<'_>,
    stateful_tcp_reader: &'reader mut StatefulTcpReader,
) -> NetworkEvent<'reader> {
    let f1 = pin!(stateful_tcp_reader.read_socket(socket));
    let f2 = pin!(sensors.changed());
    let f3 = pin!(motors.changed());
    let f4 = pin!(imu.wait());
    select_biased! {
        msg = f1.fuse() => NetworkEvent::ServerToRobot(msg),
        data = f2.fuse() => NetworkEvent::SensorData(data),
        data = f3.fuse() => NetworkEvent::MotorData(data),
        data = f4.fuse() => NetworkEvent::ExtraImuData(data),
        _ = I::sleep(Duration::from_millis(1000 / 30)).fuse() => NetworkEvent::TimedOut,
    }
}