core_pb/
drive_system.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//! Systems for motor speed calculations
//!
//! Note: one must be especially careful about length units when working with [`DriveSystem`].
//! Ensure all lengths are in grid units (gu)

use core::f32::consts::{FRAC_PI_2, FRAC_PI_6, PI};
#[cfg(feature = "micromath")]
use micromath::F32Ext;
use nalgebra::{Rotation2, Vector2};

/// Systems for motor speed calculations
#[derive(Copy, Clone, Debug)]
pub enum DriveSystem<const WHEELS: usize> {
    /// A drive system with any number of omniwheels that can freely move perpendicularly to their
    /// primary direction using rollers
    Omniwheel {
        wheel_radius: f32,
        robot_radius: f32,
        radius_angles_rad: [Rotation2<f32>; WHEELS],
        forwards_is_clockwise: [bool; WHEELS],
    },
}

impl<const WHEELS: usize> DriveSystem<WHEELS> {
    /// A drive system with any number of omniwheels that can freely move perpendicularly to their
    /// primary direction using rollers
    ///
    /// Length and speeds should use grid units (gu)
    ///
    /// # Arguments
    ///
    /// - wheel_radius: the radius from the center of a wheel to its edge, in gu; must be positive
    /// - robot_radius: 2d distance from the center of the robot to the center of each wheel, in gu; must be positive
    /// - radius_angles_rad: Angle of the line from the center of the robot to the center of each wheel, in radians, relative to the robot
    /// - forwards_is_clockwise: For each motor, if it is driven forwards, does that result in the wheel turning clockwise?
    ///
    /// Note: if all wheels are turning clockwise, the robot as a whole turn rotate counterclockwise
    ///
    /// # Returns
    ///
    /// DriveSystem if the configuration is valid, otherwise None
    pub fn new_omniwheel(
        wheel_radius: f32,
        robot_radius: f32,
        radius_angles_rad: [Rotation2<f32>; WHEELS],
        forwards_is_clockwise: [bool; WHEELS],
    ) -> Option<DriveSystem<WHEELS>> {
        if robot_radius <= 0.0 || wheel_radius <= 0.0 {
            return None;
        }

        Some(Self::Omniwheel {
            wheel_radius,
            robot_radius,
            radius_angles_rad,
            forwards_is_clockwise,
        })
    }

    /// Get the speeds that each motor should turn for the given targets, in rad/s
    ///
    /// # Arguments
    ///
    /// - target_velocity: the desired velocity of the robot in gu/s, relative to the robot
    /// - target_angular_velocity: the desired angular velocity of the robot in rad/s, clockwise positive
    pub fn get_motor_speed_omni(
        &self,
        target_velocity: Vector2<f32>,
        target_angular_velocity: f32,
    ) -> [f32; WHEELS] {
        match self {
            DriveSystem::Omniwheel {
                wheel_radius,
                radius_angles_rad,
                robot_radius,
                forwards_is_clockwise,
            } => {
                // this is the speed at which a point on the edge of the robot moves due
                // to the desired angular velocity
                let robot_edge_speed = target_angular_velocity * *robot_radius;
                // this is the speed each wheel should turn forwards to achieve this
                let target_angular_velocity_wheel_speed = robot_edge_speed / *wheel_radius;

                let mut target_angle = target_velocity.y.atan2(target_velocity.x);
                if target_angle.is_nan() {
                    target_angle = 0.0;
                }
                let target_speed = target_velocity.magnitude();
                let mut i = 0;
                radius_angles_rad.map(|radius_angle| {
                    // this is the direction the robot would move if only this motor mattered, going forwards
                    let forwards_direction = radius_angle
                        * if forwards_is_clockwise[i] {
                            Rotation2::new(PI / 2.0)
                        } else {
                            Rotation2::new(-PI / 2.0)
                        };
                    // this is the difference between the direction we want to go and the direction
                    // that this wheel is pointing
                    let difference_angle = target_angle - forwards_direction.angle();
                    // this number is:
                    // 1 if the wheel is pointing where we want to go
                    // -1 if the wheel is pointing opposite where we want to go
                    // positive if the wheel is pointing at least partially where we want to go
                    // 0 if the wheel is perpendicular to where we want to go
                    let contribution = difference_angle.cos();
                    // this is how fast this wheel should move linearly along the ground
                    let linear_velocity = contribution * target_speed;
                    // this is how fast the motor should turn
                    let angular_velocity = linear_velocity / *wheel_radius;
                    // add velocity from robot spinning
                    let final_answer = angular_velocity
                        + if forwards_is_clockwise[i] {
                            target_angular_velocity_wheel_speed
                        } else {
                            -target_angular_velocity_wheel_speed
                        };
                    i += 1;
                    final_answer
                })
            }
        }
    }
}

impl DriveSystem<3> {
    /// Given signed motor speeds, find the velocity and angular velocity of the robot
    ///
    /// # Arguments
    ///
    /// - motor_speeds: the signed speeds of the motors, in rad/s
    pub fn get_actual_vel_omni(&self, motor_speeds: [f32; 3]) -> (Vector2<f32>, f32) {
        match self {
            DriveSystem::Omniwheel {
                wheel_radius,
                robot_radius,
                forwards_is_clockwise,
                ..
            } => {
                // rotational to linear
                let rot_to_lin = |v: f32, fic: bool| {
                    if fic {
                        v * *wheel_radius
                    } else {
                        -v * *wheel_radius
                    }
                };
                let v_a = rot_to_lin(motor_speeds[0], forwards_is_clockwise[0]);
                let v_b = rot_to_lin(motor_speeds[1], forwards_is_clockwise[1]);
                let v_c = rot_to_lin(motor_speeds[2], forwards_is_clockwise[2]);

                let v_term1 = ((v_a + v_b - 2.0 * v_c) / 3.0).powi(2);
                let v_term2 = (v_a - v_b).powi(2) / 3.0;
                let v = f32::sqrt(v_term1 + v_term2);

                let a_term_top = f32::sqrt(3.0) * (v_a - v_b);
                let a_term_bot = v_a + v_b - 2.0 * v_c;
                let a = f32::atan2(a_term_top, a_term_bot) + FRAC_PI_6 + FRAC_PI_2;

                let w = (v_a + v_b + v_c) / 3.0;

                let v_x = v * a.cos();
                let v_y = v * a.sin();

                (Vector2::new(-v_y, -v_x), w / robot_radius)
            }
        }
    }

    /// Given signed motor speeds, find the angular velocity of the robot
    ///
    /// # Arguments
    ///
    /// - motor_speeds: the signed speeds of the motors, in rad/s
    pub fn get_actual_rotational_vel_omni(&self, motor_speeds: [f32; 3]) -> f32 {
        match self {
            DriveSystem::Omniwheel {
                wheel_radius,
                robot_radius,
                forwards_is_clockwise,
                ..
            } => {
                // rotational to linear
                let rot_to_lin = |v: f32, fic: bool| {
                    if fic {
                        v * *wheel_radius
                    } else {
                        -v * *wheel_radius
                    }
                };
                let v_a = rot_to_lin(motor_speeds[0], forwards_is_clockwise[0]);
                let v_b = rot_to_lin(motor_speeds[1], forwards_is_clockwise[1]);
                let v_c = rot_to_lin(motor_speeds[2], forwards_is_clockwise[2]);

                let w = (v_a + v_b + v_c) / 3.0;

                w / robot_radius
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;

    fn test_3(
        _name: &str,
        drive_system: DriveSystem<3>,
        velocity: Vector2<f32>,
        ang_velocity: f32,
        expected: [f32; 3],
    ) {
        let result = drive_system.get_motor_speed_omni(velocity, ang_velocity);

        expected.iter().enumerate().for_each(|(i, result)| {
            assert_relative_eq!(*result, expected[i], epsilon = 0.0001);
        });

        let result2 = drive_system.get_actual_vel_omni(result);
        assert_relative_eq!(result2.0.x, velocity.x, epsilon = 0.0001);
        assert_relative_eq!(result2.0.y, velocity.y, epsilon = 0.0001);
        assert_relative_eq!(result2.1, ang_velocity, epsilon = 0.0001);
    }

    fn test_n<const WHEELS: usize>(
        _name: &str,
        drive_system: DriveSystem<WHEELS>,
        velocity: Vector2<f32>,
        ang_velocity: f32,
        expected: [f32; WHEELS],
    ) {
        let result = drive_system.get_motor_speed_omni(velocity, ang_velocity);

        result.iter().enumerate().for_each(|(i, result)| {
            assert_relative_eq!(*result, expected[i], epsilon = 0.0001);
        });
    }

    #[test]
    fn test_4_omniwheel() {
        let omni_4 = DriveSystem::new_omniwheel(
            1.0,
            10.0,
            [
                Rotation2::new(0.0),
                Rotation2::new(1.0 * PI / 2.0),
                Rotation2::new(2.0 * PI / 2.0),
                Rotation2::new(3.0 * PI / 2.0),
            ],
            [true, true, true, true],
        )
        .expect("Failed to create drive system for test");

        for (name, vel, ang_vel, expected) in [
            ("right", Vector2::new(1.0, 0.0), 0.0, [0.0, -1.0, 0.0, 1.0]),
            ("up", Vector2::new(0.0, 1.0), 0.0, [1.0, 0.0, -1.0, 0.0]),
            ("left", Vector2::new(-1.0, 0.0), 0.0, [0.0, 1.0, 0.0, -1.0]),
            ("down", Vector2::new(0.0, -1.0), 0.0, [-1.0, 0.0, 1.0, 0.0]),
            ("45deg", Vector2::new(1.0, 1.0), 0.0, [1.0, -1.0, -1.0, 1.0]),
            ("spin", Vector2::new(0.0, 0.0), 1.0, [10.0; 4]),
            ("spin", Vector2::new(0.0, 0.0), -1.0, [-10.0; 4]),
            ("45+sp", Vector2::new(1.0, 1.0), 1.0, [11.0, 9.0, 9.0, 11.0]),
        ] {
            test_n(name, omni_4, vel, ang_vel, expected);
        }

        // drive system with 4th wheel reversed
        let back = DriveSystem::new_omniwheel(
            1.0,
            10.0,
            [
                Rotation2::new(0.0),
                Rotation2::new(1.0 * PI / 2.0),
                Rotation2::new(2.0 * PI / 2.0),
                Rotation2::new(3.0 * PI / 2.0),
            ],
            [true, true, true, false],
        )
        .expect("Failed to create drive system for test");

        for (name, vel, ang_vel, expected) in [
            ("back", Vector2::new(1.0, 0.0), 0.0, [0.0, -1.0, 0.0, -1.0]),
            ("back", Vector2::new(0.0, 1.0), 0.0, [1.0, 0.0, -1.0, 0.0]),
        ] {
            test_n(name, back, vel, ang_vel, expected);
        }
    }

    #[test]
    fn test_3_omniwheel() {
        let omni_3 = DriveSystem::new_omniwheel(
            1.0,
            10.0,
            [
                Rotation2::new(0.0),
                Rotation2::new(2.0 * PI / 3.0),
                Rotation2::new(4.0 * PI / 3.0),
            ],
            [true, true, true],
        )
        .expect("Failed to create drive system for test");

        let sr3_2: f32 = 3.0f32.sqrt() / 2.0;

        for (name, vel, ang_vel, expected) in [
            ("right", Vector2::new(1.0, 0.0), 0.0, [0.0, -sr3_2, sr3_2]),
            ("up", Vector2::new(0.0, 1.0), 0.0, [1.0, -0.5, -0.5]),
            ("left", Vector2::new(-1.0, 0.0), 0.0, [0.0, sr3_2, -sr3_2]),
            ("down", Vector2::new(0.0, -1.0), 0.0, [-1.0, 0.5, 0.5]),
            ("spin", Vector2::new(0.0, 0.0), 1.0, [0.1, 0.1, 0.1]),
            ("spin", Vector2::new(0.0, 0.0), -1.0, [-0.1, -0.1, -0.1]),
            (
                "r+sp",
                Vector2::new(1.0, 0.0),
                1.0,
                [0.1, -sr3_2 + 0.1, sr3_2 + 0.1],
            ),
        ] {
            test_3(name, omni_3, vel, ang_vel, expected);
        }
    }
}